S ep 2 00 0 Infinite - dimensional Grassmann - Banach algebras

نویسنده

  • V. D. Ivashchuk
چکیده

A short review on infinite-dimensional Grassmann-Banach algebras (IDGBA) is presented. Starting with the simplest IDGBA over K = R with l 1-norm (suggested by A. Rogers), we define a more general IDGBA over complete normed field K with l 1-norm and set of generators of arbitrary power. Any l 1-type IDGBA may be obtained by action of Grassmann-Banach functor of projective type on certain l 1-space. In non-Archimedean case there exists another possibility for constructing of IDGBA using the Grassmann-Banach functor of injective type. Infinite-dimensional Grassmann-Banach algebras (IDGBA) and their modifications are key objects for infinite-dimensional versions of superanalysis (see [1]-[5] and references therein). They are generalizations of finite-dimensional Grassmann algebras to infinite-dimensional Banach case (for infinite-dimensional topological Grassmann algebras see also [6]). Any IDGBA is an associative Banach algebra with unit over some complete normed field K [7], whose linear space G is a Banach space with the norm ||.|| satisfying ||a · b|| ≤ ||a||||b|| for all a, b ∈ G and ||e|| = 1, where e is the unit. (For applications in superanalysis K should be non-discrete,

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

m at h . FA ] 1 5 M ay 2 00 0 BANACH EMBEDDING PROPERTIES OF NON - COMMUTATIVE L p - SPACES

Let N and M be von Neumann algebras. It is proved that L p (N) does not Banach embed in L p (M) for N infinite, M finite, 1 ≤ p < 2. The following considerably stronger result is obtained (which implies this, since the Schatten p-class Cp embeds in L p (N) for N infinite). Theorem. Let 1 ≤ p < 2 and let X be a Banach space with a spanning set (x ij) so that for some C ≥ 1, (i) any row or column...

متن کامل

Completely continuous Banach algebras

 For a Banach algebra $fA$, we introduce ~$c.c(fA)$, the set of all $phiin fA^*$ such that $theta_phi:fAto  fA^*$ is a completely continuous operator, where $theta_phi$ is defined by $theta_phi(a)=acdotphi$~~ for all $ain fA$. We call $fA$, a completely continuous Banach algebra if $c.c(fA)=fA^*$. We give some examples of completely continuous Banach algebras and a sufficient condition for an o...

متن کامل

Nonexpansive mappings on complex C*-algebras and their fixed points

A normed space $mathfrak{X}$ is said to have the fixed point property, if for each nonexpansive mapping $T : E longrightarrow E $ on a nonempty bounded closed convex subset $ E $ of $ mathfrak{X} $ has a fixed point. In this paper, we first show that if $ X $ is a locally compact Hausdorff space then the following are equivalent: (i) $X$ is infinite set, (ii) $C_0(X)$ is infinite dimensional, (...

متن کامل

Bosonic and k-fermionic coherent states for a class of polynomial Weyl-Heisenberg algebras

The aim of this article is to construct à la Perelomov and à la Barut–Girardello coherent states for a polynomial Weyl-Heisenberg algebra. This generalized Weyl-Heisenberg algebra, noted A{κ}, depends on r real parameters and is an extension of the Aκ one-parameter algebra (Daoud M and Kibler M R 2010 J. Phys. A: Math. Theor. 43 115303) which covers the cases of the su(1, 1) algebra (for κ > 0)...

متن کامل

Completely Continuous Banach Algebras

For a Banach algebra $fA$, we introduce ~$c.c(fA)$, the set of all $phiin fA^*$ such that $theta_phi:fAto fA^*$ is a completely continuous operator, where $theta_phi$ is defined by $theta_phi(a)=acdotphi$~~ for all $ain fA$. We call $fA$, a completely continuous Banach algebra if $c.c(fA)=fA^*$. We give some examples of completely continuous Banach algebras and a suffici...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1989